Тесты IQ

Тесты IQ, ваше мнение

1. Действительно отображают уровень интеллекта человека.
2
10%
2. Возможность проверить человека на логические/ассоциативные способности, к оценке реального интеллекта никакого отношения не имеют
12
60%
3. Ваш вариант (напишите)
6
30%
 
Всего голосов: 20

IContentProvider
Reactions: 95
Сообщения: 384
Зарегистрирован: Пн авг 01, 2022 8:54 pm
Откуда: USA
:: viewtopic.php?p=675131#p675131

Re: Тесты IQ

Сообщение IContentProvider »

Другое - требуется определение что такое "интеллект", но исключающее логические способности (почему?). А то это какая-то неведомая магическая субстанция.
VikKur
Reactions: 549
Сообщения: 1745
Зарегистрирован: Вс авг 27, 2023 10:42 am

Re: Тесты IQ

Сообщение VikKur »

авот ещё вспомнилось (я не решил) :
доказать, что с помощью двух оперицой
- умножения на 3
- целочисленное деление на 2 (ну [n/2])
можно получить из 1 любое число...
alex_127
Reactions: 1332
Сообщения: 6212
Зарегистрирован: Ср июн 15, 2022 9:44 am

Re: Тесты IQ

Сообщение alex_127 »

Princeton Lion писал(а): Пн ноя 13, 2023 6:52 am
perkins писал(а): Вс ноя 12, 2023 9:52 pm 9^х-6^х=4^х, а где y? Мне недавно один человек с таким Айкью, что писец дал такую задачу и сказал, что решить он ее не смог. Может уже и смог, дело было пару недель назад, но мне не удобно его спрашивать, обидется, хотя похоже он уже обиделся, этот примитив решился на салфетке буквально за минуту, уровень задачи примерно как со свечами
Вероятно, я уже близок к Альцгеймеру, но тоже не могу решить эту задачку!
Я ещё понимал бы, если 9^x-6^x=0... 😉
Ой, да ладно. Выносим х за скобки и все просто: х(9^1-6^1 -4^1) = 0 ...
:-)
Страшно удобный сервис поможет Вам проложитъ оптималъный маршрут поездки (aviasales.ru)
Auth
Reactions: 52
Сообщения: 85
Зарегистрирован: Пт июл 07, 2023 2:51 am
Откуда: Ukraine, Cherkasy
Интересы: Autistic

Re: Тесты IQ

Сообщение Auth »

Недавно смотрел фильм «Игры разума» про Джона Нэша (насколько я понял, это реальный человек). Он был гением математики, но с шизофренией, постоянно убегал от «русских агентов», в т.ч. со своих лекций, а когда жена попросила его искупать ребенка, он поручил это своему воображаемому другу и пошел заниматься чем то другим…ребенок чуть не утонул. Можно ли назвать его интеллект высоким? В области математики – безусловно, а в целом? Можно ли назвать высоким интеллект человека, который живет в своем, очень искаженном по сравнению с реальным, мире?
Аватара пользователя
Princeton Lion
Reactions: 2414
Сообщения: 17664
Зарегистрирован: Вс июн 19, 2022 7:42 am
Откуда: Принстонские мы...
Интересы: Вино и женщины!

Re: Тесты IQ

Сообщение Princeton Lion »

VikKur писал(а): Пн ноя 13, 2023 12:01 pm доказать, что с помощью двух оперицой
- умножения на 3
- целочисленное деление на 2 (ну [n/2])
можно получить из 1 любое число...
ничонипонял...
если 1 умножить на 3, а потом разделить на 2, то получится полтора!
Кирдык нечаянно нагрянет,
Когда его совсем не ждёшь...
alex_127
Reactions: 1332
Сообщения: 6212
Зарегистрирован: Ср июн 15, 2022 9:44 am

Re: Тесты IQ

Сообщение alex_127 »

Auth писал(а): Пн ноя 13, 2023 1:02 pm Недавно смотрел фильм «Игры разума» про Джона Нэша (насколько я понял, это реальный человек). Он был гением математики, но с шизофренией, постоянно убегал от «русских агентов», в т.ч. со своих лекций, а когда жена попросила его искупать ребенка, он поручил это своему воображаемому другу и пошел заниматься чем то другим…ребенок чуть не утонул. Можно ли назвать его интеллект высоким? В области математики – безусловно, а в целом? Можно ли назвать высоким интеллект человека, который живет в своем, очень искаженном по сравнению с реальным, мире?
и можно ли считать интеллектуальным человека который морду мерзавцу набить не сможет и девушку защитить от стаи подонков? вот, старина кольт сразу дает +30 пунктов к интеллекту...
Страшно удобный сервис поможет Вам проложитъ оптималъный маршрут поездки (aviasales.ru)
Аватара пользователя
Princeton Lion
Reactions: 2414
Сообщения: 17664
Зарегистрирован: Вс июн 19, 2022 7:42 am
Откуда: Принстонские мы...
Интересы: Вино и женщины!

Re: Тесты IQ

Сообщение Princeton Lion »

VikKur писал(а): Пн ноя 13, 2023 12:01 pm с помощью двух оперицой
Как-то раз я оперицу
Пригласил к себе на пиццу...

(продолжение - во "Взрослых"...)
1 Изображение
Кирдык нечаянно нагрянет,
Когда его совсем не ждёшь...
VikKur
Reactions: 549
Сообщения: 1745
Зарегистрирован: Вс авг 27, 2023 10:42 am

Re: Тесты IQ

Сообщение VikKur »

Princeton Lion писал(а): Пн ноя 13, 2023 1:13 pm
VikKur писал(а): Пн ноя 13, 2023 12:01 pm доказать, что с помощью двух оперицой
- умножения на 3
- целочисленное деление на 2 (ну [n/2])
можно получить из 1 любое число...
ничонипонял...
если 1 умножить на 3, а потом разделить на 2, то получится полтора!
одын- полтора , гдэ то так...
alex_127
Reactions: 1332
Сообщения: 6212
Зарегистрирован: Ср июн 15, 2022 9:44 am

Re: Тесты IQ

Сообщение alex_127 »

VikKur писал(а): Пн ноя 13, 2023 2:22 pm
Princeton Lion писал(а): Пн ноя 13, 2023 1:13 pm

ничонипонял...
если 1 умножить на 3, а потом разделить на 2, то получится полтора!
одын- полтора , гдэ то так...
нету на клавиатуре правильной скобочки https://www.educative.io/answers/floor-division
Страшно удобный сервис поможет Вам проложитъ оптималъный маршрут поездки (aviasales.ru)
Auth
Reactions: 52
Сообщения: 85
Зарегистрирован: Пт июл 07, 2023 2:51 am
Откуда: Ukraine, Cherkasy
Интересы: Autistic

Re: Тесты IQ

Сообщение Auth »

perkins писал(а): Вс ноя 12, 2023 9:52 pm 9^х-6^х=4^х, а где y? Мне недавно один человек с таким Айкью, что писец дал такую задачу и сказал, что решить он ее не смог. Может уже и смог, дело было пару недель назад, но мне не удобно его спрашивать, обидется, хотя похоже он уже обиделся, этот примитив решился на салфетке буквально за минуту, уровень задачи примерно как со свечами
Поигрался с калькулятором виндовс, вроде примерно получается 1,18681439029
Как математически решить, не знаю, математику забыл давно.
perkins
Reactions: 2232
Сообщения: 10428
Зарегистрирован: Вт июн 14, 2022 5:10 pm

Re: Тесты IQ

Сообщение perkins »

Auth писал(а): Пн ноя 13, 2023 3:31 pm
perkins писал(а): Вс ноя 12, 2023 9:52 pm 9^х-6^х=4^х, а где y? Мне недавно один человек с таким Айкью, что писец дал такую задачу и сказал, что решить он ее не смог. Может уже и смог, дело было пару недель назад, но мне не удобно его спрашивать, обидется, хотя похоже он уже обиделся, этот примитив решился на салфетке буквально за минуту, уровень задачи примерно как со свечами
Поигрался с калькулятором виндовс, вроде примерно получается 1,18681439029
Как математически решить, не знаю, математику забыл давно.
как решить аналитически уже написали на прошлой странице
Аватара пользователя
assassello
Reactions: 1532
Сообщения: 6087
Зарегистрирован: Пн июн 13, 2022 6:46 pm
Откуда: San Jose, CA
Интересы: против Путина и, следовательно, против Трампа

Re: Тесты IQ

Сообщение assassello »

VikKur писал(а): Пн ноя 13, 2023 12:01 pm авот ещё вспомнилось (я не решил) :
доказать, что с помощью двух оперицой
- умножения на 3
- целочисленное деление на 2 (ну [n/2])
можно получить из 1 любое число...
Попахивает гипотезой Коллатца... ;)
https://ru.wikipedia.org/wiki/Гипотеза_Коллатца

Эта задача точно имеет элементарное решение?
Слава Украине, слава нации! и пиздец - Российской Федерации.
VikKur
Reactions: 549
Сообщения: 1745
Зарегистрирован: Вс авг 27, 2023 10:42 am

Re: Тесты IQ

Сообщение VikKur »

assassello писал(а): Пн ноя 13, 2023 5:17 pm
VikKur писал(а): Пн ноя 13, 2023 12:01 pm авот ещё вспомнилось (я не решил) :
доказать, что с помощью двух оперицой
- умножения на 3
- целочисленное деление на 2 (ну [n/2])
можно получить из 1 любое число...
Попахивает гипотезой Коллатца... ;)
https://ru.wikipedia.org/wiki/Гипотеза_Коллатца

Эта задача точно имеет элементарное решение?
не элементарно, но из первого курса. я забыл решение :oops: .её решил какой-то математик-отец-друга) . Насколько я помню (а помню я плохо) что-то про сходимость ряда...
alex_127
Reactions: 1332
Сообщения: 6212
Зарегистрирован: Ср июн 15, 2022 9:44 am

Re: Тесты IQ

Сообщение alex_127 »

VikKur писал(а): Пн ноя 13, 2023 5:22 pm
assassello писал(а): Пн ноя 13, 2023 5:17 pm
Попахивает гипотезой Коллатца... ;)
https://ru.wikipedia.org/wiki/Гипотеза_Коллатца

Эта задача точно имеет элементарное решение?
не элементарно, но из первого курса. я забыл решение :oops: .её решил какой-то математик-отец-друга) . Насколько я помню (а помню я плохо) что-то про сходимость ряда...
счас дите придет, его спрошу - пусть решает. делегировать надо.
Страшно удобный сервис поможет Вам проложитъ оптималъный маршрут поездки (aviasales.ru)
Аватара пользователя
assassello
Reactions: 1532
Сообщения: 6087
Зарегистрирован: Пн июн 13, 2022 6:46 pm
Откуда: San Jose, CA
Интересы: против Путина и, следовательно, против Трампа

Re: Тесты IQ

Сообщение assassello »

VikKur писал(а): Пн ноя 13, 2023 5:22 pm
assassello писал(а): Пн ноя 13, 2023 5:17 pm
Попахивает гипотезой Коллатца... ;)
https://ru.wikipedia.org/wiki/Гипотеза_Коллатца

Эта задача точно имеет элементарное решение?
не элементарно, но из первого курса. я забыл решение :oops: .её решил какой-то математик-отец-друга) . Насколько я помню (а помню я плохо) что-то про сходимость ряда...
Хуясе "тест на IQ"! :D
Слава Украине, слава нации! и пиздец - Российской Федерации.
Аватара пользователя
assassello
Reactions: 1532
Сообщения: 6087
Зарегистрирован: Пн июн 13, 2022 6:46 pm
Откуда: San Jose, CA
Интересы: против Путина и, следовательно, против Трампа

Re: Тесты IQ

Сообщение assassello »

alex_127 писал(а): Пн ноя 13, 2023 5:23 pm счас дите придет, его спрошу - пусть решает. делегировать надо.
Я попробовал по индукции, но застрял. Может кто доведет до конца?..
База: 1 (единица) у нас уже есть. 2 = 1*3*3/2/2. 3 = 1*3.
Шаг: допустим, что цепочкой операций мы можем получить любое число от 1 до n (n>=3). Покажем, что можем получить и n+1.
Рассмотрим 3 случая: n делится на 3 с остатком 0, 1 или 2. По мере усложнения доказательства, пойдем в порядке 2,0,1.

1. пусть n=3k+2, тогда n+1=3k+3=3(k+1). Т.е., n+1 выводится из k+1 (*3), а k+1 < n, т.е. тоже выводимо по допущению.

2. пусть n=3k, тогда n+1=3k+1. Заметим, что число 6k+3=6k+2+1 при целочисленном делении на 2 даст 3k+1=n+1. А получить 6k+3 мы можем как 3(2k+1). Т.е., n+1 выводится из 2k+1 (*3/2), а 2k+1<3k, то есть меньше n, поэтому выводимо по допущению.

3. пусть n=3k+1, тогда n+1=3k+2. ... упс! как-то неочевидно..
Слава Украине, слава нации! и пиздец - Российской Федерации.
VikKur
Reactions: 549
Сообщения: 1745
Зарегистрирован: Вс авг 27, 2023 10:42 am

Re: Тесты IQ

Сообщение VikKur »

assassello писал(а): Пн ноя 13, 2023 5:33 pm
alex_127 писал(а): Пн ноя 13, 2023 5:23 pm счас дите придет, его спрошу - пусть решает. делегировать надо.
Я попробовал по индукции, но застрял. Может кто доведет до конца?..
База: 1 (единица) у нас уже есть. 2 = 1*3*3/2/2. 3 = 1*3.
Шаг: допустим, что цепочкой операций мы можем получить любое число от 1 до n (n>=3). Покажем, что можем получить и n+1.
Рассмотрим 3 случая: n делится на 3 с остатком 0, 1 или 2. По мере усложнения доказательства, пойдем в порядке 2,0,1.

1. пусть n=3k+2, тогда n+1=3k+3=3(k+1). Т.е., n+1 выводится из k+1 (*3), а k+1 < n, т.е. тоже выводимо по допущению.

2. пусть n=3k, тогда n+1=3k+1. Заметим, что число 6k+3=6k+2+1 при целочисленном делении на 2 даст 3k+1=n+1. А получить 6k+3 мы можем как 3(2k+1). Т.е., n+1 выводится из 2k+1 (*3/2), а 2k+1<3k, то есть меньше n, поэтому выводимо по допущению.

3. пусть n=3k+1, тогда n+1=3k+2. ... упс! как-то неочевидно..
по индукции я запутался тогда...там что-то вроде сведём к
3^m/2*n (где * операция [2]*[2]...[2] ) этот ряд очевидно ограничен сверху 3^m/2^n и снизу чем-то (это важно но я пока не понял)
теперь осталось доказать, что для любого Е (epsilon) и целочисленного P (число к которому мы хотим прийдти ) существуют m,n такие что (3^m/(2^n*P) -1 ) < E (ряд 3^m/2^n сходится к P). Вроде такая идея была..
alex_127
Reactions: 1332
Сообщения: 6212
Зарегистрирован: Ср июн 15, 2022 9:44 am

Re: Тесты IQ

Сообщение alex_127 »

alex_127 писал(а): Пн ноя 13, 2023 5:23 pm
VikKur писал(а): Пн ноя 13, 2023 5:22 pm
не элементарно, но из первого курса. я забыл решение :oops: .её решил какой-то математик-отец-друга) . Насколько я помню (а помню я плохо) что-то про сходимость ряда...
счас дите придет, его спрошу - пусть решает. делегировать надо.
упс, дите (12 лет, не отрываясь от еды и экрана с midjourney and xkcd) спросило - collatz conjecture что-ли? так его разве решили?
на вопрос откудо глаголило - было в одом из выпусков veritasium
2 Изображение
Страшно удобный сервис поможет Вам проложитъ оптималъный маршрут поездки (aviasales.ru)
Аватара пользователя
Женя Стоунер
Reactions: 1821
Сообщения: 8006
Зарегистрирован: Пн сен 26, 2022 12:45 pm

Re: Тесты IQ

Сообщение Женя Стоунер »

Auth писал(а): Пн ноя 13, 2023 1:02 pm Недавно смотрел фильм «Игры разума» про Джона Нэша (насколько я понял, это реальный человек). Он был гением математики, но с шизофренией, постоянно убегал от «русских агентов», в т.ч. со своих лекций, а когда жена попросила его искупать ребенка, он поручил это своему воображаемому другу и пошел заниматься чем то другим…ребенок чуть не утонул. Можно ли назвать его интеллект высоким? В области математики – безусловно, а в целом? Можно ли назвать высоким интеллект человека, который живет в своем, очень искаженном по сравнению с реальным, мире?
Джон Нэш страдал навязчивой идеей, будто он палестинский террорист. Оригинально.
VikKur
Reactions: 549
Сообщения: 1745
Зарегистрирован: Вс авг 27, 2023 10:42 am

Re: Тесты IQ

Сообщение VikKur »

VikKur писал(а): Пн ноя 13, 2023 5:59 pm
assassello писал(а): Пн ноя 13, 2023 5:33 pm
Я попробовал по индукции, но застрял. Может кто доведет до конца?..
по индукции я запутался тогда...там что-то вроде сведём к
3^m/2*n (где *n операция [2]*[2]...[2] ) этот ряд очевидно ограничен сверху 3^m/2^n и снизу чем-то (это важно но я пока не понял)
теперь осталось доказать, что для любого Е (epsilon) и целочисленного P (число к которому мы хотим прийдти ) существуют m,n такие что (3^m/(2^n*P) -1 ) < E (ряд 3^m/2^n сходится к P). Вроде такая идея была..
плохо спал )...идея такая :
снизу эта байда ограничена 3^m/2^n-1 (там несложно)
дальше от целочисленных m и n можно перейти к вещественным x и y(эту лекцию я пропустил, но спинным мозгом чувствую, что можно)
а при вещестевенных x и y для любых Е и P можно подобрать х и y (с логарифмами там - вроде несложно) так,что видно 3^x/2^y -> P
ps сори тема
Ответить